3.2″ Nextion display files for CEC v1.097 Beta

With each new releases of the CEC firmware and CEC Nextion firmware,  Ian KD8CEC provides constructors with 2.4″ and 2.8″ versions of the NExtion firmware.    Meanwhile, a bunch of other Nextion screen users eagerly await adjustments to the firmware that will work with their particular screen size (3.2″, 3.5″, 4.3″, 5″ or 7″).   Adjustments have to be made for each screen size.

Darren VE3XLT has helpfully converted the current beta for the larger 3.2″ screen.

Files for downloading can be found here:

[wpdm_package id=’3101′]

[wpdm_package id=’3095′]

[wpdm_package id=’3104′]

[wpdm_package id=’3107′]

 

Here’s a video of the display in use so you can see its features

 

Reference

Low power on 80m?

Allison KB1GMX notes that if you have a v4 board and experiencing low power output on lower bands (80m and 40m) you may want to check the emitter of Q90 to see if a .01uf or a 470pf or 220PF is there.

There was a change to lower the value from .01 to 470 pf to level the output
power so 80M wasn’t 15-20W when 20m was maybe 8 watts output.

Some have experienced  that low bands work very poorly with a 470pF or 220pF capacitor.  You may want to increase the capacitor back to 0.01µF or perhaps 1000pf.

Reference

QRP-Labs bringing out new Txcvr

 

Hans, G0UPL (www.qrp-labs.com) produces a range of QRP kits, including his well regarded QRP CW rig, the QCX.  He has been working on a new SSB kit (in fact all modes, AM and FM as well as digital modes) that will be released later this year.  The new rig will be modular, 10w output, and initially available as a 40m transceiver only.

A later module will add 10 LPFs that will set it up for use on all HF bands (including 60m).  Expected costs are around US$75 for the 40m only kit (no enclosure) and around US$150 including all bands and enclosure.

The photo above shows the small size of the new kit (seen alongside the QCX).  The photo below shows a glimpse inside.

Reference

Biteensio with LCD touch screen coming

Jim W0EB is working on a 2.8″ touch panel for the triumverate’s BITeensio.  That will make four different alternative touch screen options for constructors:  VU2SPF Mega2560 attached 2,4″ LCD (first up way back in January),  KD8CEC Nextion screen (in a range of sizes from 2.4″ to 7″) , BiTeensio 2.8″, and the long awaited JackAl (in 5″ and 7″ sizes).

Outboard filter unit for uBITx

Tom WB6B  wanted to build a new filter for use with the uBITX (to overcome harmonics on his output). However,  he didn’t want to build a filter that would be strictly tied to the uBITX.

So he built a standalone Low Pass Filter box that works as an add on filter for the uBITX as well as becoming a general purpose piece of Ham equipment he can use over and over for other needs.

It uses an arduino to measure the frequency you’re transmitting on and select any individual or combination of filters you like. The proposed design uses a set of filters and a relay switch board; such as to ones by QRP Labs. But, the Sketch code should be easy enough to modify for whatever you like.

The controller can show the selected filter with LEDs.  Alternatively  it can be configured to use an LCD display, which will display the transmit frequency as well.

Tom’s unit is still under construction, but he has built and tested a prototype with a signal generator.

He is releasing the preliminary design now because it is complete enough for people to try out on their own filter designs. It makes using outboard filters really easy, and he thinks  people will like it.

Tom welcomes feedback on improvements people make while building their own “Auto Filters” with the controller.

The code for the controller is here: https://github.com/mountaintom/TX_Auto_Filter

Reference

New release of VU2SPF firmware v3.1cU now available

A new version ofSP Bhatnagar VU2SPF  firmware for the low cost MCUfriend TFT with Touchscreen based VFO + BFOs is out now along with an illustrated manual.

This version (3.1cU) provides the following new features:

  • a row at the bottom to set / adjust both BFOs
  • PTT type selection (Toggle or Normal)
  • auto Time out duration setting
  • individual offsets for each band
  • Touch Sensitivity
  • Lower and Upper limits for displays of S-meter and Power meter.

It continues to provide:

  • 3 VFOs (A/ B and Memory -100 channels)
  • Direct Band selection
  • LSB/USB setting
  • Setting the frequency change step size from 1 Hz to 1 MHz
  • exchange of frequency between VFO and Memory
  • saving all parameters on demand
  • split frequency operation
  • auto band Up /Down scanning and CAT control

This system uses a standard Arduino Mega board with compatible MCUFriend type TFT / Touch shield and either a standard Si5351 breakout board or one designed specifically for it to replace the Raduino board.

This combination makes it very simple to assemble in a short time.

Please note that this system is only for experimenters who have some practical experience with Arduino and the relevant hardware and are keen to learn. There is no ready-made kit as of now and all information is already available on our blog and on Github.

If there is someone willing to kit it for ham friends Raj would be only too happy to assist.

Reference

A solution to harmonics and spurs on 12m and 10m

It was Warren WA8TOD brought the issues with harmonics on CW to our attention.  Undaunted by the issues, he set out to design a bandpass filter that could replace Filter 4 for use on 12 and 10 meters.  He wanted to see if it was possible to design a simple filter that had steep enough skirts to attenuate both the harmonics and the “45 MHz – Carrier” spurs.  He also wanted to see just how simple a filter could be and still meet this requirement.

Here is a very simple third order filter that appears to fill the bill. Shown are the original design, the actual implementation, and the measured results. It does the job (just barely, in the case of 12 meters but good enough) and is only a third order filter as opposed to the fifth order designs for the original low pass Filter 4.

Warren used the online 66Pacific toroid calculator which called for 5, 20, and 5 turns respectfully on T-6-25 cores. He ended up measuring and trimming these to 4,17, and 4 turns in the final design. Similarly, the design called for 480, 32, 480 pf for the caps… He ended up using 440 (2 x 220), 27, 440 pf to get the profile shown in the measured spectrum.

In the end, he achieved with a single filter a practical tested design that meets both harmonic and spur requirements at 2 watts.  It can be done!

Reference

Summary update on efforts to find solutions to harmonics and spurs

There have been many postings on the BITX20 IO Groups list following the raising of concerns by a couple of list members about harmonics and spurs emanating from the µBITx.

It is still rather early to be sure that these issues apply to every µBITx produced.   They certainly don’t apply to single-band BITx designs like the BITx40.   Raj VU2ZAP suggests that his µBITx is pretty clean (except 10m) and has provided spectrum screenshots to demonstrate this.  However, several have found issues with their boards.  The issues seem to lie with design deficiencies (layout issues, relay switching design and the use of a double balanced mixer without specific BPFs) suggesting the issues can be overcome with future revisions to the µBITx main board, but will require hardware mods on the existing boards in service.

The spurs, as identified by Allison KB1GMX appear on SSB on higher bands (above 18MHz) as a result of unwanted mixer by-products and exacerbatedn by overdriven audio.  There may be ways of reducing the spurs sufficiently by modifying the circuitry that injects the VFO output via the si5351a to combine with the 45MHz IF signal.  Higher injection levels from the si5151a are being experimented with by Ian KD8CEC, but it is unclear as yet whether this approach could reduce spurs.  Others are pursuing alternative hardware solutions, including incorporation of filters (BPFs) to replace the 0-30Mhz LPF following the mixer stage which is in circuit on both receive and transmit.

Several others  are working on circuit board options and design suggestions that would address the odd harmonics (3rd, 5th, 7th, etc.) found particularly on CW.  This involves reworking the final LPF matrix (four LPFs).  This could be a daughter card that plugs into the main board or, alternatively could be a completely separate stand-alone circuit board.  There is discussion about whether these should be plugged-in manually, switched using a standard wafer switch, or be relay driven, as in the µBITx design.  Several options may well result.

If you are concerned right now about a fix for the harmonic generation on CW, you can use outboard LPF filters.  For example, the filters that Hans G0UPL has a 5 LPF board  kit available for sale, and also sells individual filter kits for each band.  Minor changes to firmware would be required to select the correct filter for each band.  You would also need to rescue some additional ports (e.g. by using an i2c display).   Alternatively you could insert an LPF in the antenna line and change it out when you change band.

You can use Hans G0UPL’s filter board for switching in and out Band Pass Filters as well.  These are best used to replace the existing 0-30MHz LPF.   While you may be kept busy for two or three evenings winding toroids, the solutions to these problems already exist.   You will end up with a cleaner transmitter and receiver after doing this.

Ashhar Farhan VU2ESE responds to comments on spectral purity

Ashhar Farhan VU2ESE responds to recent posting on the BITX20 IO Groups list surrounding issues with spectral purity for the µBITx.   His comments are reproduced in full below

Peeps,

Let me put some of the discussions on harmonic and spur purity of ubitx in context. This is going to be a long read, so bear with me as we plod through this. At the outset, I must thank Allison, Arv, Raj and Warren for their deep dives into these challenges.

Before I deep dive into these numbers, let me sum it up for those who just want the headline :

The ubitx put out harmonics less than 2 milliwatts on all the bands. That’s well below what a ‘commercially designed’, well behaved, FCC compliant, 100 watt commerical set would spew out. There are some easy fixes.

Details

Now, onto the details:

Let’s consider a no-name, standard issue, 100 watt HF transceiver with the harmonics below the required -43 dbc level. 100 watts is +50dbm. +50dbm – 43 dbc = +7dbm. That is about 5 milliwatts in harmonics. This is what we live with on air with all those factory built rigs. 5 milliwatts of harmonics. If you add a linear it can even get worse. An SB-220 after an Elecraft K2, will put out almost a watt of harmonics.

Now, consider our 10 watt ubitx. You can see the scans done by Warren. They are on https://groups.io/g/BITX20/album?id=65861. He has helpfully drawn a green line across the scans. The green line is the -43dbc line. Apart from the actual signal, everything else must stay below the green line as per the FCC guideline.

Let’s sum up the report :

10 meters : SSB & CW are good  (https://groups.io/g/BITX20/photo/65861/0?p=Name,,,20,1,0,0)

12 meters: SSB & CW are good (https://groups.io/g/BITX20/photo/65861/1?p=Name,,,20,1,0,0)

15 meters: SSB & CW are good (https://groups.io/g/BITX20/photo/65861/2?p=Name,,,20,1,0,0)

17 meters: SSB & CW are good (https://groups.io/g/BITX20/photo/65861/3?p=Name,,,20,1,0,0)

20 meters: SSB harmonics are higher by 4db, CW is good (https://groups.io/g/BITX20/photo/65861/4?p=Name,,,20,1,0,0).

30 meters: CW harmonics are 4db above the required level. SSB is not allowed anyway (https://groups.io/g/BITX20/photo/65861/5?p=Name,,,20,1,0,0)

40 meters: SSB is 3db above the green line, CW is even higher by 10 db (https://groups.io/g/BITX20/photo/65861/6?p=Name,,,20,1,0,0)

80 meters: SSB is within the spec, CW is out of spec by 5 db (https://groups.io/g/BITX20/photo/65861/8?p=Name,,,20,1,0,0)

To sum it up:

SSB: it is within the rulebook everywhere except on 20M & 40M by 3 db.

CW: it is within the rulebook except on  on 30M, 40M & 80 M.

So, what’s the problem and how is it cured?

First: the trouble seems to be more with CW than SSB harmonics. We can reduce the CW level by decreasing the CW drive level. This is determined by the amount of current that flows into the front-end diode mixer by changing the R105 to a higher value resistor. I guess one can also do this in software by reducing the CLOCK #2 current to 2 ma from 8 ma when in CW. This will clear CW for all the bands.

Second: the alignment as it comes out from HF signals will show far better harmonic suppression than being reported here. For instance, the -38 dbc on 20 meters and -30 db on 40 meters will almost disappear if you balance it out with the bias on the IRF510s. The factory alignment works like this : First crank up both the IRF510s for 100 ma standing current on each, then tweak one of them to null out the harmonics. It is like balancing out the carrier on diode modulator.

Third: below 14 MHz, the IRF510s are distorting with too much drive. If you back off the drive to adjust to a leve of 7 watts, the harmonics will climb down to be within the spec. (Remember that the harmonics are not present at the output of the 45Mhz-to-HF mixer, they are generated in the power chain). This was also Allison’s suggestion.

Future revisions

We use 3 section low pass filters made out of micrometals’ toroids and  C0G caps from AVX. Most commercial sets use only 2 section low pass filters.  And yes, we can change the relays. I doubt if the problem is the relays. If it were so, it would be worse on the higher bands. The fact that the harmonics are climbing at the lower frequencies points to overdrive, not filter design. The filter layout etc is less critical on the lower bands as opposed to higher bands.

I guess that we we really need is a good transmit side ALC to cut the drive on lower bands. The gain varies by as more than 10 db across the spectrum from 3 Mhz to 30 MHz. Given that we want to keep the design to use what is available in a regular junkbox, this is a challenge to overcome with IRF510s and general purpose transistors. Allison has tried using 2N2222As with some success.

So, in a nutshell, here is the summary:

The ubitx remains less polluting than a 100 watt commercial rig that works within the FCC requirements. The harmonics at 14 Mhz and below can be controlled by backing off the drive level.

I would like to hear contrary views and figures. As I said before, unlike a commercially made radio, ubitx will thrive on critical feedback and design suggestions. This only gets better with time, like any good open source design.

Thanks all for the inputs.

– f

Reference