New Release of KD8CEC Firmware v1.08

Ian KD8CEC has formally released version  1.08  of his firmware. This the first major release since 1.061, although there have been a number of Beta versions in between that many constructors will have donwloaded.
Some  key features in this version include:
1.Receive performance is improved compared to the original firmware or version 1.061
2.ATT function has been added to reduce RF gain (This shifts the 45Mhz IF passband down the slope of the filter giving an attenuator effect).
3.Added the ability to connect an inboard or outboard SDR unit after the 45MHz roofing filter (A low cost RTL-SDR is available that can be controlled by computer software providing a full SDR receiver)
4.Added ADC Monitoring in CAT communications
5. Supports several LCD variants including:
  • 16×02 Parallel LCD – i.e. LCD equipped with µBITX
  • the 16×02 LCD display configured to use I2C
  • 20×04 Parallel LCD with existing wiring in the µBITx
  • 20×04 LCD display configured to use I2C
  • Two 16×02 LCD displays configured to use I2C (Dual LCD mode)
6.Added extended switch support (up to 6 switches can be incorporated on your front panel to control various rig functions).
7. S Meter support – Any S-meter should be compatible.  The S-Meter will work on 2 or 4 line displays.
8.Added S-Meter Setting Assistant to uBITX Manager
9.Add recovery mode (that incorporates Factory Reset)
The pictures below show two different displays in operation on the rig:

There have been many other improvements and fixes. More information is available on Ian’s Hamskey blog.
Please see the link below for details of the release version of the software:
You can download HEX file and uBITX Manager from the link above. You can also download the source code at https://github.com/phdlee/ubitx and see all the changes I’ve made so far.   If there is a non-critical bug in the public version, Ian will link to the new firmware from his blog.
A new version of the CEC firmware manual is anticipated shortly.
Reference

Raduino versions

Kees K5BCQ is trying to assemble a list of Raduino alternatives.  Here’s the ubitx.net modified version of his list that is not a mashup of hardware and firmware variations (which is a much longer list!), but simply a list of Raduino hardware options:

1) Original “Raduino” with a Nano Ver ? (base Farahan started with and probably what most uBITX units have today)
2) “RaduinoUMAX” with firmware by Mike Hagen, WA6ISP, (more I/O)
3) “Raduino Protoneer” (Arduino Zero Compatible Nano-ARM, uses SAM21 microcontroller)
4) Raduinoi2c Board from Nik VK4PLN (see https://vk4pln.blogspot.com.au/2018/03/raduinoi2c-board.html)
5) “Raduino Pill” by Joe, W3JDR (uses a STM32F103 “Blue Pill” microcontroller, lots more I/O)
6) “BITeensio”, this is the new one by Jim Shelton, W0EB, more info coming soon.
7) “JackAl” board  by Jack W8TEE, and Al  AC8GY – Teensy 3.6  (`$50).
8) “KB1OIQ” by KB1OIQ has I2C display, supports Keypad and voice output suitable for low/no vision operators. ??$$
9) “Alison TBD” by Alison, KB1GMX, uses the Nano and has no rotary encoder, less or no menu, more buttons. ??$$

Reference

New base firmware for uBITx under testing

Ashhar Farhan VU2ESE have created a next version of the base software after thinking hard about it. You can download it  here:

https://github.com/afarhan/ubitx4.

Ashhar invites you all to test it. if you are not familiar with C code or Arduino programming, it is suggested you wait for a few days until we get all the bugs sorted out. This is only for Arduino regulars.

Send any bug reports directly to Ashhar’s email box at farhanbox@gmail.com. In the subject line use the word “#ubitx40”. I will try to answer all emails but I can’t promise responses to all.

Ashhar has measured the mood of the BITX20 list and has made the call to substantially borrow from Ian KD8CEC’s code and back port it to the original ubitx code.  The new code has about 10% more lines but it is substantially more robust and useful.

The main features that Ashhar has cherry picked from Ian’s code are:

1. Keyer. You have to choose which keyer type to use, but the keying is much better and robust now. This code is a total copy/paste of Ian’s keyer. The auto-keyer (that sends out preset phrases in CW) is left out. The Iamabic A, Iambic B and the handkey sending works very well.

2. CAT control. Given the popularity of FT8, Ashhar has rewritten the CAT control by following Ian’s code but follows the ubitx coding conventions. It represents a miminal set of controls.

3. Split operation has been included.

4. Rationalised menus: the menu system is now more consistent.

5. Tuning mechanism: The accelerated tuning works, and it doesn’t jump randomly like before, nor does it work at the same speed. For very long band changes, it is recommended to use the menu option to change band.

Among the things left out was support for different types of displays, WSPR, and many other goodies. The EEPROM memory map has been kept consistent with KD8CEC’s plan. You can switch between both code bases easily.

Ashhar has kept usage of English words at a minimum.

Reference

Getting the VFO in the band when turning on the uBITx

With the manufacturer’s firmware that the uBITX ships with, you need to switch from VFO A to B in order to save the current frequency in EEPROM memory so that next time you power up it will use that last saved value. The manufacturer’s software only saves things if there is a specific event requiring something to be saved (such as changing VFOs).

Reference

JackAl is here!

Jack W8TEE and Al AC8GY have  released details of the JackAl board following FDIM (preceding Dayton Hamvention).

Friday night is a sort of Show-and-Tell at FDIM and they used that opportunity to show their JackAl board in action. The photo above shows a little more about what it is and does.

At the show, Al hooked up a noise generator to the µBITX to show how the filters work. (There are 4 preset filters for CW and 4 for SSB.) In addition, you can customise one CW and SSB filter to the bandwidth you desire. You might be able to see that the skirts are pretty steep for the filters on the scope in the background. The setting of the CW custom skirts are set differently, in that you pick a centre frequency (e.g., 700Hz in the shot below), press the encoder, and then you see this:

In this case, turning the encoder CCW increases the bandspread (i.e., the 440 red number above, although it looks orange in the photo) by simultaneously moving the skirts (480Hz and 920Hz) further apart. If you turn the encoder CW, you narrow the bandspread. Most CW users will probably center the bandpass on their favorite sidetone frequency, which centers the bandpass on that frequency.

The demo used a 5″ display, although a 7″ display is also available. The third knob on the front is for a second encoder that we use for everything from setting the CW keyer speed to adjusting the filter skirts. You can see some of the plots on the panel at the rear of the picture above for some of the board’s features (e.g., filter responses, compression, etc.) Those will be included in the documentation when the (downloadable) manual is finished.

The JackAl board has the following features:

  • 5″ or 7” touch screen 800×480 TFT color display
  • Dual VFO’s
  • RIT
  • S meter
  • RTC
  • CW keyer, 5 to 50wpm (we could go up to 100wpm, but…really?)
  • Up to 50 CW preset messages, selectable at runtime…perfect for contest messages
  • Touch screen function and control selection (e.g., band changes, RIT, mode, VFO, VFO increment, LSB/USB, etc.)
  • Automatic LSB/USB selection based on frequency (overrideable)
  • One touch frequency increment changes (1Hz to 1MHz in multiples of 10…the white underscore in the frequency window)
  • Dual encoders (frequency, features)
  • EEPROM storage of user preferences (one-click reset to “factory” defaults)
  • Uses Teensy 3.6 processor (1Mb flash @180MHz) and companion audio board
  • Support for 3 external CW push button switches (NO) for sending stored CW messages (e.g., contesting)
  • Hardware AGC using IF take-off
  • Audio AGC with adjustable threshold
  • Mic compressor with adjustable threshold
  • 8 band audio equalizer
  • Receive audio filter: 48dB/octave (8 pole equivalent DSP filters)
  • 4 CW presets (150, 300, 400, 600, [or none] Hz 3dB bandwidth) + 1 user-defined knee frequencies (at runtime!) filter
  • 4 SSB presets (1500, 1800, 2200, 3000, [or none] Hz 3dB bandwidth) + 1 user-defined knee frequencies (at runtime!) filter’
  • Variable Notch filter, encoder adjustable, use specified Q
  • 7 watt power amplifier

The board will be distributed with all (surface mounted) parts in place. The user must supply the Teensy 3.6 ($30), its supporting audio board ($15), and the 5″ ($34) or 7″ ($44) touch screen displaying (using the RA8875 controller chip, BuyDisplay.com).

We expect the JackAl board to sell for $50.

We may need to adjust this price as we have only received “ballpark” cost estimates for the board since we only have the Gerber files for the Beta board.

Currently, we are using less than 20% of the available flash memory (out of 1Mb) and less than 15% of the SRAM (256K), so there is plenty of memory resources available for adding “stuff”. The board also brings out a number of I/O pins to help your experimentation. With the exception of removing one SMD resistor on the µBITX board and soldering two wires to those pads, all interconnections are via existing connectors.

Our best guess is that after finishing the modified Gerber files, production, Beta testing, and writing support manuals, it will be probably two months before we begin distribution. We will announce its availability here as soon as we can. BTW, if anyone knows a high-quality PCB manufacturer who also does pick-and-place at reasonable prices, we are getting quotes and would like to know about them.

Reference

Ashhar Farhan VU2ESE inducted into CQ Magazine Hall of Fame

Doug AC9RZ has alerted constructors to the big news of the day – Ashhar Farhan VU2ESE, designer of the BITx series of kitset transceivers has been inducted into the CQ Amateur Radio Hall of Fame!  The announcement from CQ Magazine follows:

——————

(Xenia, Ohio – May 18, 2018) – The CQ Amateur Radio Hall of Fame has 11 new members for 2018, CQ magazine announced today. This brings to 321 the total number of members inducted since the hall’s establishment in 2001.

The CQ Amateur Radio Hall of Fame honors those individuals, whether licensed hams or not, who have made significant contributions to amateur radio; and those amateurs who have made significant contributions either to amateur radio, to their professional careers or to some other aspect of life on our planet. The 2018 inductees (listed alphabetically) are:

  • Marlon Brando, FO5GJ (SK), iconic movie actor
  • David Brown, KC5ZTC (SK), NASA astronaut killed in 2003 Columbia disaster
  • Kalpana Chawla, KD5ESI (SK), NASA astronaut killed in 2003 Columbia disaster
  • Laurel Clark, KC5ZSU (SK), NASA astronaut killed in 2003 Columbia disaster
  • Ashhar Farhan, VU2ESE, pioneer in popularizing open-source Bit-X “semi-kits” using Arduinos for affordable QRP transceivers

  • Grady Fox, W4FRM (SK), SSB pioneer; worked on Manhattan Project during World War II and the camera for NASA’s lunar landers
  • Wendell King, ex-2ADD (SK), African-American pioneer of broadcasting and college radio
  • Fred Lloyd, AA7BQ, founder of QRZ.com, the most widely-accessed amateur radio website
  • Mark Pecen, KC9X/VE3QAM, wireless communication and networking pioneer, inventor, cybersecurity expert
  • Carole Perry, WB2MGP, longtime advocate for youth in amateur radio; moderator of Dayton youth forum for more than 30 years
  • Ed Westcott, W4UVS, photographer who chronicled the Manhattan Project during World War II and later helped the FBI with its investigation of the Jonestown massacre

Two new members each are also being inducted into the CQ DX and Contest Halls of Fame at the respective Dayton DX and Contest dinners. Their names will be announced separately.

CQ Communications, Inc. / 17 West John St. / Hicksville, NY 11801 USA / 516-681-2922

The world’s premier independent amateur radio publisher.

Publishers of:
CQ Amateur Radio, CQ Books, the CQ Video Library

Reference

uBITx Success stories

Reference

W3JDR has been busy cooking up some interesting mods

Joe W3JDR asked on the IO Groups BITX20 list for CAD details for a board layout for the Blue Pill” STM32F103 processor.  Members quickly discovered that Joe has a blog with details of his hacks to the µBITx that would be of wider interest to constructors.

Reference

Check out  https://w3jdr.wordpress.com/  for a range of mods including:

  • audio preamp (Q70) dynamic range improvement by substitution of a resistor
  • a digital sampling S Meter
  • a slide rule type colour display for frequency
  • an amazing front panel for his µBITx
  • a high resolution optical encoder

Joe says,

“I’ve been busy behind the scenes doing a lot of things with the control system. I now have the entire app running on an STM32F103 “Blue Pill” board, which is only about $2.50 on Ebay. This gives me a 70 mHz 32 bit controller with 128K bytes of program memory.

“My software S-meter is now working quite well and only requires 2 resistors and a cap, plus some code. I’m using a separate ILI7735 display for the S-meter, both displays on the same SPI bus. The S-meter is derived from a 10kHz sample-rate of the pre-amp audio, with software peak detection. The TFT meter display has a max-hold pointer that resets every few seconds, while the main pointer is real-time. There are digital readouts on it for peak signal level in uV, dBm and S-units.

“The measurements from the S-meter will drive a digipot after the audio pre-amp to effect a feedforward AGC. Feedforward, with software calibration, should make for a very fast acting AGC without the overshoot/undershoot artifacts of feedback systems.

“I’m also using a 400 ppr optical encoder for frequency control with interrupt processing; it tunes beautifully smooth, with 1 hZ steps and software acceleration. . All of this puts a real strain on the little Nano u-controller, hence the move to the Blue Pill.

“I intend to layout a new Raduino that accepts the ‘pill’, with extra connectors for SPI and I2C busses. I developed my own tinier version of the Adafruit Si5351 board that will mount on the Raduino. I might even use a separate Si5351 for the main VFO in order to eliminate the crosstalk spurs generated in the single-chip approach. This was all moving smoothly while I was house-bound during Winter, but will slow down while the weather’s nice outside.”

Shipping paused

Several constructors had ordered their µBITx expecting a shipping notice, but hadn’t received one.

Ashhar Farhan VU2ESE confesses, “The trouble is me. I am supposed to ship an updated firmware. They are waiting for that. The boards are ready, the software was supposed to have been delivered last week.”

It turns out that family matters have intervened.  Patience folks!

Reference