Variable bandwidth crystal filter

Some time ago we featured a design from Michael N2ZDB that used a Jones filter design from TenTec to produce a variable filter passband for his BITX40.

There has been more recent interest on the IOGroups BITX20 list in variable bandwidth filters in the µBITx.

Karl-Heinz DF9RU completed a build of a µBitx transceiver and found it to be an excellent learning platform. He has been toying with a variable CW filter.

Up until now audio filters have largely been adopted by members:  either active filters with operational amplifiers or DSP filters with microcontrollers.  Karl-Heinz acknowledges that these options represent easy solutions for integration into the µBITx.

Karl-Heinz has a CW transceiver HB-1B from Youkit. This transceiver has a quartz filter of variable bandwidth.  The bandwidth can be continuously changed using varicap diodes.  The circuit diagram of the HB-1B can be found here.

Karl-Heinz was impressed by the acoustic result of the simple circuitry of his HB-1B and wondered why this alternative had not previously been used?

TenTec has patented a filter design which describes the passband curves of this filter.  A German website  also documents results on the bandwidth of these filters, which match with data from the TenTec patent.

Thierry F1HSU suggests taking a look at Tasa’s site for a tunable quartz filter  : http://yu1lm.qrpradio.com/bp%20yu1lm.htm

Ashhar Farhan VU2ESE suggests that these filter designs are merely a variation of the min -loss cohn filters. As only the coupling capacitance is varied without varying the terminating impedance, we must expect high ripple at all settings except one. What does this mean? It means that the filter will exhibit ringing and phase delays.

A better option would be a smooth Butterworth response with minimum ringing at a fixed frequency.  You can vary the BFO for shifting the audio tone. A 400 hz bandwidth will be narrow enough and yet offer a brightness that we miss in more aggressive designs.

Wes wrote a paper on this on his website www.w7zoi.net.
Ted, KX4OM reminded us of the SSB6.1 transceiver, which employs a tuneable SSB filter with tuning diodes in place of the capacitors in a min-loss configuration. The rig is a basic SA612-based design which can be found here:

Allison KB1GMX suggests looking at this design as well.  It is not new and a bit tricky but works best with lower frequency crystals.

Reference

Adding SOTABEAMS variable bandwidth filter to your uBITX

SOTABEAMS make a  Digital Variable Audio Filter Module  that could usefully be added to your uBITx.

Dennis KG4RUL has developed an Arduino sketch for the SOTAEAMS Vari-filter which includes a nice display.  It utilizes a USB Nano V3.0 ATmega328 16M 5V Micro-controller CH340G board, or similar, available from Amazon and other sources and an OLED display module such as the HiLetgo 1.3″ IIC I2C Serial 128×64 SSH1106 OLED LCD Display LCD Module for Arduino AVR PIC, or similar.
Dennis is happy to share his firmware, but cannot offer any support – so please do not contact him for support.
You can download the sketch and a schematic, in PDF, from the SOTABEAMS website:
An additional document supplies information for linking a microcontroller with a SOTABEAMS, VariBeam (VB) module for use with a BITX/uBITX.  You can access this file at the following URL:

Reference

DSP on a cheap processor

IK8YFW Giuseppe has used a cheap US$2 processor to create a DSP audio processing unit that works with any radio (including the µBITx).

The project was aimed at achieving an economic and simple DSP unit, based on the ARM Cortex STM32f103 processor module.  Guiseppe implemented two narrow CW filters of about 300 and 700 hz and two SSB filters with a bandwidth of less than 2200 Hz and less than 3300 Hz.  He also included a 6-level noise reduction algorithm. The project is a very cheap solution suitable for embedding in any and every QRP project. The  project code can be found on Github.   It is not perfect, as Guiseppe is still experimenting with the code.  The project can be found here:

https://github.com/gcallipo/RadioDSP-Stm32f103

Some test here:

https://m.youtube.com/watch?v=TFcsVX59YbQ

https://m.youtube.com/watch?v=ujDCt_HhbYg

Reference

VK4PLN audio filter board

Nik VK4PLN has now received his 700Hz CW audio filter boards and built up the board as shown below:

He put these on the spectrum analyser.  The spectrum before the filter is included in circuit:

And after:

Seems to work!   To Nik’s ears an LM324 gives a better result than the TLC274 op amp.  You mileage may vary.

Reference

700Hz CW Audio filter board

Nik VK4PLN has yet another board design – this time for an audio CW filter similar to the QCX and HiPerMite.  Nik says “he is  loving the cheap and easy EasyEDA/JLPCB boards and simple web designer”.

He “takes no credit for the design, just copied it and added a switching relay.   He has ordered 10 boards at $10 posted”.

Details of the filter

Center Frequency: 700 Hz
Bandwidth: 200 Hz
DC Power: 5VDC
GAIN: Upto 20dB via R11 and R12 + trimpot.

Resistors 1206 SMD:
R1 33k
R2 33k
R3 1M
R4 47k
R5 47k
R6 36k
R7 36k
R8 10k
R9 750k
R10 10
R11 100K
R12 100K

Capacitors 1206 SMD:
C1 0.1u 104
C2 47n 473
C3 36n 363 (33n + 3n3 mount on side together)
C4 1n 102
C5 39n 393 (33n + 5n8 mount on side together)
C6 1n 102
C7 2n2 222
C8 2n2 222
C11 0.1u 104
C14 220u Electrolytic

Other:
IC TLC274
Relay OMRON G6S-2-DC5
200K/100k trimpot

R11 and R12 are optional to parallel the 200k trimpot to make it a logarithmic 100k.   Or just use a linear 100k pot.

Use a switch connected to 5V to turn on the filter.

This powers the opamp and switches the relay feeding the audio into the circuit.  When off the relay just passes the audio straight through unfiltered.

Reference