VK4PLN audio filter board

Nik VK4PLN has now received his 700Hz CW audio filter boards and built up the board as shown below:

He put these on the spectrum analyser.  The spectrum before the filter is included in circuit:

And after:

Seems to work!   To Nik’s ears an LM324 gives a better result than the TLC274 op amp.  You mileage may vary.

Reference

Shock-proofing your uBITx

John VK2ETA asks what he should do to protect his µBITx from the rigours of daily use when taken portable.

1. Are they other components you should be concerned about?

2. What method is recommended: hot melt glue, epoxy glue, superglue or other method?

3. What about cables

4. Any other actions that should be taken?

The recommendations from IO Group members seem to be:

  • Hot glue is your best bet. Poor man’s potting to the rescue. It holds very well and removes easy enough for repairs and upgrades. (Doug Wilner)
  • Make sure your cable bundles aren’t so tight that they are putting stress on the outer cables in the connectors as they bend into the bundle. Hot glue the connectors in place and wires coming out for strain relief. (Doug Wilner)
  • To mitigate shock and vibration getting to the PCB consider something like LORD Micro-Mounts and see the distributor page.  (Arvo KD9HLC)
  • Scotch weld (Andrew W6AVC)
Reference

New manual for KD8CEC v1.061 firmware

Rod KM6SN has put together a comprehensive manual for Ian KD8CEC’s firmware.   KD8CEC firmware (version 1.061 current) runs on a standard factory µBITx.  No mods are required.   There are significant improvements to the user interface and to functionality.   An upgrade from Ashhar Farhan VU2ESE factory firmware is recommended to address firmware bugs and add new functionality (memories, CAT control, IF shift, etc.).

Download Rod’s manual here: KD8CEC manual v1.061

SSM2167 Mic Compressor: Avoiding feedback

John VK2ETA notes that Simon, VK3ELH, pointed out  an issue that when inserting an SSM2167 mic compressor circuit between the microphone and the uBitx mic-preamp, it can create feedback when the microphone was placed near the speaker while in RX.  This is because the SSM2167 module is always on.

The solution John has applied is to connect the shutdown pin of the SSM2167 (pin 3) to the Raduino T/R digital output (D7) through a 2.7K ohm resistor. This disables the chip while in RX and removed the mic feedback issue.

Pictured above is an indication of where he picked up pin 3 on the SSM2167 on his module. The purple wire is connected to what is the right hand side of resistor R4. The 4.7K resistor on the RHS is for the mic-bias and the 51K resistor on the top-left is for bringing the compression ratio towards 4.

John feeds the Vcc pin on the board from the regulated 5V of his Raduino. Measured consumption at 2mA is a very small extra load on the Raduino regulator.

There is a DC blocking cap on the input and output circuits of the board already, so no external blocking capacitors are needed.  However, a bias resistor does need to be added for the microphone.

The 2.7K resistor is not mounted on the module, so is not shown in the picture.

Also not shown on the picture are an axial choke of 100uH between the “in” connection and the Mic, plus a 1nF capacitor between the “in” connection and ground to block RF feedback when Txing on higher frequencies. For John, RF feedback was noticeable from 15m through 10m. Others may not have this issue.

John also has a 10K adjustable potentiometer between the “out” connection on the module and the original Mic input to the uBitx.  His is turned to about 80% through its range.

John mounted his board on header pins so he can remove it as required.  He extended the header pin on the “out” side (bottom LHS on picture) past the board to provide an extra connection for the shutdown wire.

John finds the compression and noise gate work quite well on the module. When he is silent the background noise does not trigger any movement of the power needle, but it goes up as soon as he speaks into the Mic. Also despite showing quite an increase in average power, he hasn’t had any negative comments on his  audio. I was told that it was noticeable, but not unpleasant, “good for DX”.   And this was with a change in the standard resistor value for compression to give around 4: 1 compression.

Reference

 

Digikey Kikad library

A lot of constructors are using the Kikad free tool for drawing circuits and PCBs.   The folks at Digi-Key (a major parts supplier) have a collection of components you can drop into Kikad if you want to.  Download from here.

Reference

Extensive VK2ETA mods to KD8CEC firmware

John, VK2ETA, has implemented a range of changes in Ian KD8CEC’s software targeted at portable operations (the software can be downloaded here in the files section of the BITX20 IO Group).

VK2ETA Software modifications to KD8CEC firmware

The scope of these modifications is described below:

Options for various features – These can be turned on or off. Key objective is to be able to customise the rig based on your needs and unfortunately on the restricted memory size of the Nano. So not all features can be selected at once. Choices, choices…

ATU control – A servo-based L-Network ATU. The communication between the Raduino and the ATU Arduino is via I2C. There is a separate sketch for the ATU Arduino (Nano or Pro-mini).   ATU operating mode can be set to OFF, Manual as in on-demand, or auto-RX meaning that it pre-tunes based on historical data on a change of band and after first change of dial frequency (for a quick scan of the bands). It uses the EEPROM data of the closest stored frequency for pre-tune or tune on-demand to accelerate the tuning process.

Handsfree microphone/headphone – Using an Android style 3 rings (TTRS) handsfree earpieces/mic combination, with 1 or 3 buttons (Play/Pause, +, -), the PTT is controlled by Play/Pause as toggle, and I use long presses on + and – as respectively pre-tune and smart-tune of the ATU. Short + or – presses could be used for frequency up and down. Requires a very simple hardware mod to free-up A6 (see below).

S-meter measure and display – using analogue input A7 from an 2N7002 based AGC or a MAX9814 circuit or any other for that matter.

Software based AGC range extender – to augment (as in double or triple) the dynamic range of an audio AGC. This uses the slope of the 1st If filter at 45Mhz to attenuate the Rx signal when the audio AGC reaches its limit. Adds over 50dB of dynamic range.

Forward power and SWR measure and display – Currently assumes that the ATU is providing that info over I2C. Otherwise could be adapted with a pair of analogue inputs for measure. See the excellent NT6D design on the wiki.

Options for displaying the S-Meter, SWR and forward power –  in either easy to see “fat” bars with no number, or “skinny” bars with more text and numbers.

Enable a “Memory mode” – selectable by menu, which cycles through all the populated memories (channels). Dial lock also locks the change of channels.

Made some rarely used or once-off functions as options  – to recover program memory after initial tuning and allow for more options to be selected.

Fixed some issues with the IF-shift option – Ian has resolved these in his new V1.06 and later releases. Two issues were present: IF-shift in USB would change the receive frequency and it was applied to TX as well. Now applies to Rx only.

Hardware modifications required to use VK2ETA software mod

The only required hardware mod is to connect the CW key input to the PTT. Since in Ian’s software we select the mode by menu, there is no need to have a separate analogue input tied-up for the CW key. This frees-up analogue input 6 for use by other functions like the handsfree option above.

Still to come

John plans to apply Ian’s improvements in v1.06, especially the CW transmit frequency option and if possible the WSPR beacon mode (as a further add-in option).

How to use VK2ETA software

Download the zip files, and unzip these in your Arduino sketches folder.  Edit the ubitx_20 options sections, using #define for enabled and #undef for disabled.

Perform a CTRL-R to compile and check how much memory is used. If you go over the limit, a warning is issued.  Providing you have enough memory to run the software, upload the sketch to the Arduino.

John has uploaded both the Raduino as well as the Arduino sketch for the ATU and SWR measurement. They can be found in the folder “Variations on Ian Lee’s Software (by VK2ETA) + ATU sketch”. 

All software is released under GPL V3.
Reference

Use the 45MHz Roofing Filter for an RF AGC?

 

John, VK2ETA, came across an idea in the search for a greater range for his MAX9814 AGC circuit.

Stations, above S9+10 would produce distortion in the audio circuit with the MAX9814 AGC in circuit.   He isolated this to the MAX circuit as the distortion would disappear when it was bypassed.

John was curious as to what the first 45Mhz filter (Roofing Filter) shape was like and if there was some plateau to be used somewhere for attenuating the strong signals.

He modified Ashhar Farhan’s original software to include an “Adjust First IF” menu item, in steps of [1000Hz].

By using a local station’s carrier aligned on 1,500Hz audio as a reference and an Android audio spectrum display he plotted the response of the single crystal roofing filter. This also gave an idea of the effect on the audio of shifting the filter up and down. The “noise” in the graph below near the peak is the effect of changing from a measure every [10,000Hz] to a measure every [1000Hz], plus the inaccuracy of John’s rudimentary instrumentation.

As you can see, there are rather slow slopes on each side of the peak (which is off-center by [7,000Hz] approximately when compared to 1,500Hz – the centre frequency of an SSB signal).

So John has proceeded with changing Ian’s software (based on v1.04) to incorporate an automatic AGC step-down when the signal reaches S9+10 and and automatic step-up when it reached S0. In the middle range, the MAX audio circuit does the AGC job.

John used the up side of the filter as he got some birdies on some of the shifts on the down side.

Now the uBitx can handle S9++++ stations with ease, that is until the first amplifier stage before the filter saturates which John suspects is unlikely in “normal” conditions.

The only concern would be for another, possibly even stronger, station which would be placed at the peak of the filter (possibly several KHz away). This could produce intermod distortion. But the chances of that happening are pretty remote.

So, this approach works quite well and is surprisingly effective for AGC control at an early stage in the receiver.

It also works in reverse, with the transmit SSB signal being attenuated by the same amount, thereby leading to a possible ALC software control for the units which measure the power out (or possibly just the current).   It could also be a simple solution to set attenuation (e.g. on digital modes).  Again, check the effect of the slope on the voice tone.

John has attached snippets of his code.  He has also uploaded the modified uBitx software for testing the filter both in RX and TX in the  “Software based IF attenuation” folder in the BITX20 IO Group files.

John will soon publish the complete set of Ian’s modified software including mods to control his ATU unit.   However, in seeing discussions on an IF AGC in the group, he thought this update would be of interest to constructors.

Code Snippets

#define OPTION_SMETER
#define OPTION_SOFTWAREAGC

void doSoftwareAGC() {
#ifdef OPTION_SMETER

int newSMeter;

//VK2ETA S-Meter from MAX9814 TC pin
newSMeter = analogRead(ANALOG_SMETER);
//Serial.print(“newSMeter:”); Serial.println(newSMeter);

//Faster attack, Slower release
currentSMeter = (newSMeter > currentSMeter ? ((currentSMeter * 3 + newSMeter * 7) + 5) / 10 : ((currentSMeter * 7 + newSMeter * 3) + 5) / 10);

//Serial.print(“currentSMeter:”); Serial.println(currentSMeter);
//Scale it
scaledSMeter = 0;
for (byte s = 8; s >= 1; s–) {
if (currentSMeter > sMeterLevels[s]) {
scaledSMeter = s;
break;
}
}
//Serial.print(“scaledSMeter, un-adjusted:”); Serial.println(scaledSMeter);
#ifdef OPTION_SOFTWAREAGC
//Apply auto-shift of first IF to increase the dynamic range of the Audio AGC circuit
long previousShift = firstIfShift;
if (scaledSMeter >= 7) {
//Reduce gain by shifting the first and second If by the same value, thereby
// leaving the RX frequency the same but using the slope of the roofing
// filter to deliver progressive attenuation.
// 10kHz or 5kHz per step.
firstIfShift += (scaledSMeter > 7 ? 10000 : 5000);
} else if (firstIfShift > 0 && scaledSMeter < 1) {
//Re-increase the gain if we reduced it earlier
firstIfShift -= 5000;
firstIfShift = firstIfShift < 0 ? 0 : firstIfShift;
}
if (firstIfShift != previousShift) {
setFrequency(frequency);
//Serial.print(“firstIfShift:”); Serial.println(firstIfShift);
//Adjust meter by IF attenuation except for the first 10Khz. Approx 6dB per 5KHz.
scaledSMeter += (firstIfShift > 10000 ? (firstIfShift – 10000) / 5000 : 0);
//Serial.print(“scaledSMeter, adjusted:”); Serial.println(scaledSMeter);
}
#endif //OPTION_SOFTWAREAGC
#endif //OPTION_SMETER

}

//And the setfrequency function becomes:

void setFrequency(unsigned long f) {
f = (f / arTuneStep[tuneStepIndex – 1]) * arTuneStep[tuneStepIndex – 1];

setTXFilters(f);

if (cwMode == 0)
{
if (isUSB) {
//si5351bx_setfreq(2, SECOND_OSC_USB – usbCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(2, SECOND_OSC_USB + firstIfShift – usbCarrier + f – ((isIFShift && !inTx) ? ifShiftValue : 0));
si5351bx_setfreq(1, SECOND_OSC_USB + firstIfShift);
}
else {
//si5351bx_setfreq(2, SECOND_OSC_LSB + usbCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(2, SECOND_OSC_LSB + firstIfShift + usbCarrier + f + ((isIFShift && !inTx) ? ifShiftValue : 0));
si5351bx_setfreq(1, SECOND_OSC_LSB + firstIfShift);
}
//VK2ETA Bring back the BFO to default if using IF Shift and we are TXing
si5351bx_setfreq(0, usbCarrier + ((isIFShift && !inTx) ? ifShiftValue : 0));
}

else
{
if (cwMode == 1) { //CWL
//si5351bx_setfreq(2, SECOND_OSC_LSB + cwmCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(2, SECOND_OSC_LSB + firstIfShift + cwmCarrier + f + ((isIFShift && !inTx) ? ifShiftValue : 0));
si5351bx_setfreq(1, SECOND_OSC_LSB + firstIfShift);
}
else { //CWU
//si5351bx_setfreq(2, SECOND_OSC_USB – cwmCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(2, SECOND_OSC_USB + firstIfShift – cwmCarrier + f – ((isIFShift && !inTx) ? ifShiftValue : 0));
si5351bx_setfreq(1, SECOND_OSC_USB + firstIfShift);

}
//VK2ETA Bring back the BFO to default if using IF Shift and we are TXing
si5351bx_setfreq(0, cwmCarrier + ((isIFShift && !inTx) ? ifShiftValue : 0));

}

Reference

Research into the audio pop problem

John KK5VH has been working on understanding the audio pop problem for a while. He doesn’t have a fix yet, but he has identified that:

  1. The relays have a max actuation time of 7ms.
  2. K1 drives K3 via the TX voltage –  that means you have a 7ms (max) time from when the TX turns on and K3 disconnects the audio.
  3. Changing the power (turning RX/TX  on and off) on these one transistor amplifiers will cause a large spike to be coupled via C63 and C51 to the audio IC before K3 can cut them off.
  4. Both the amplifiers draw tiny amounts of current, Q6 about 1.3ma and Q70 about 2.2ma.  They do not have enough current draw to bring their respective power sources down quickly. Secondly, they have 47µF capacitors that hold the power up within that circuit.

John has been simulating the circuit via LTspice with some results.

He increased C64 to 517µF by paralleling a 470 µF cap across it and changed C52 from 47µF to 0.1 µF.  That made a timing difference that cured the turn on pop but left a gigantic pop on turning off the rig or moving from TX back to RX.

After all of this playing around he still don’t have a good hardware answer to the problem!

However, John suggests that if the Arduino Nano controlled K3, this could solve the problem using timing delays. A simple sequence would in moving from RX to TX, first turn on K3 (disconnecting the audio chain) then switch on K1 into TX mode.  When finished with TX mode, hold K3 on for a number of milliseconds to all the RX circuits to stabilize before switching back to RX on K1. Hopefully, this would solve the problem.  John welcomes comments!