A crisis that gets worse … uBITx woes!

A full blown mid-life crisis can sometimes only get worse!

Further investigations of the issues surrounding µBITx odd harmonics on CW on the lower bands are showing that the problem is from board layout issues in the relay switching and LPF section of the board.

Allison KB1GMX has cut up her board and done testing on the LPF/relay section.  This shows the following:

  • On 3.5 MHz in TX mode, the 3.5 MHz filter is selected the blow by limits us to barely 25DB of filtering of harmonics at 30 MHz
  • On 7.0 MHz in  TX mode,  the 7 MHz filter is  selected, blow by limits us to maybe 25db  of filtering.’
  • On 21.0 MHz  in  TX mode with the 21 MHz filter selected the blow by limits us to about 30db at 30MHz of filtering.

While the “blow by” may vary by individual unit and it is posisble to argue over the magnitude,  over all the filters are simply unacceptable.

Allison says “At this point I’d rip out the filters and the relays and even the TR relay (KT1-3 and K3) and route everything to an external low pass board. At that point I think we have a chance with the external board performance being unknown but for certain it cannot be worse.”

Stay calm

For many of us, all of this is simply more bad news.  However, we should stay calm at this point and start using our commercial rigs or other kits for a while.  With such a large community of constructors,  there will be solutions found to some of these problems.   You may well need to do some mods though for your µBITx to be fully legal in your country.


There are two issues known to date:

  • Spurious emissions (spurs) generated in the double balanced mixer at 45 MHz that exceed US emission standards on SSB above 18 MHz.  This issue is exacerbated by higher audio drive levels (e.g. if you have added a mic preamp or voice compressor).  This issue is an unnoticed design issue.

It is likely that this issue can only be resolved by adding additional filtering to replace the existing 30MHz LPF following the mixer, or by redesign of the µBITx with a higher IF frequency (maybe 70MHz or higher).

  • Harmonic output on 3rd, 5th, 7th, 9th harmonic, etc. that exceeds US emission standards on CW on some bands.   This issue is caused by “blow by” in the LPFs and the associated relay switching.  This is a design issue with the layout of the board and the relay switching design (using only one relay to switch both ends and the sequential routing of relays on lower bands).

It is likely that this issues can only be fixed by disconnecting the existing LPFs and reconstructing the filtering and relay switching system on a new daughter board.

Reference #1
Reference #2

A mid-life crisis

uBITx.net followers will remember the concerns that Allison KB1GMX raised about the spurs generated by the µBITx above 18 MHz on SSB (but not on CW), at least on her ‘Sample of One’.

“No one is going to want to hear this” says Warren WA8TOD, “But the design of the PA output filter is probably fatally flawed and it is likely due to board layout issues.”

Warren was puzzled how the high order harmonics from 80 meter operation, for example, could possibly survive a 7th order filter which should have well over 50 dB of attenuation at the 5th harmonic. So he set out to test the results with a 9th order filter, figuring more is better. The harmonics remained. But in troubleshooting that installation the source of the issue was revealed.

In the attached screenshot the purple trace is the 80 meter CW output with the harmonics clearly far in excess of the green -43 dBc legal threshold (NB The line on the screen is actually at -53dB).

The blue trace is the output with L20 removed which disables the 80 meter filter and blocks RF output from the finals from reaching the output connector. (Don’t worry….. the tests were carried out with the drive reduced so the output was only one half watt. And I have a bag of spare IRF510s on hand……). The harmonics remain! How can that be?

The circuit diagram shows the path 80 meter RF follows through all three switching relays in order to reach the filter. It is a very novel and inventive concept to use three relays to switch both ends of 4 filters. Most manufacturers would require 8 separate relays to do this job. And for a very good reason.

In order for a filter to provide the required 50+ dB of attenuation, the filter itself must have 60 dB or more of input-to-output isolation. If it does not then the unwanted products simply bypass the filter and go directly to the output. That appears to be exactly what is happening in the filter complex of this unit.

There is no easy fix for this. No amount of on board filtering and tweaking is going to improve harmonic suppression until the path around the filters is blocked. I suspect that path is via the relays themselves but board layout often is critical as well in such cases. Warren’s guess is that the only solution would be either extensive external filtering or a carefully laid out daughter card to replace the existing filters and relays.


Spurs found in uBITx that present issues for operation above 18 MHz

Alison KB1GMX has been exploring ways to flatten the TX output across bands over the last couple of weeks, but  says,

“Here is the problem…  Improving the amp leads to acknowledging other issues.   In particular … the spurs!”

When transmitting on 15m and 10m the LPF has a cutoff frequency over 30 MHz, so effectively the amp will pass everything through below 30 MHz.

If you overdrive the mixers especially the 45mhz output mixer you get more than one product from the mixer.  For a desired output at 28 MHz, you actually get two other outputs, one at 11.995 MHz (that is 50 to 60db down on the desired output) and another at about 17 MHz, which if the mixer is not over-driven is around 40dB down.  However, if the audio is pushed a bit harder, it may be only 25db down from the desired frequency.  The amplifier has no filtering below 30MHz and will gladly amplify all of the signals through the pre-driver, driver and finals stages and pass them out to your antenna.

This  is not an issue until you hit around 18 MHz as the output low pass filters that are switched in help attenuate the spurs.

The Maths!

Output is IF(about 45mhz) + LO (48 to 75mhz)= 3 to 30 mhz
The spur case is IF(45mhz) – Output frequency (42 to 15mhz) Its going down while the dial frequency is going up.

For up to 18mhz the output lo pass filters and the inside 33mhz low pass filter are at work doing the job.

However for 21 and 28 MHz both filters are roughly 33-35 MHz cutoff and the spur is now down around 24 and 17 MHz respectively. They will be about 40-50db down until the point where the 45mhz mixer overloads and then the spurs get very much stronger at a frequency well below the cutoff of the low pass filters.   Since power output is low on 10M people will likely push the audio and the spur will get significantly worse.

The is due to the nature of Double Balanced Mixers: they are three port devices and all three can receive input or deliver outputs.   Also inside the mixer all possible sums and differences for the base frequencies and their harmonics will exist.

This was determined, without the amp operating, by breaking the circuit at C200 to allow a spectrum analyzer to be inserted.   We can’t blame the amplifier chain for this as it would just do its designed duty and amplify everything.

There is no obvious solution at present

Right now Allison has no obvious solution to present.

Commercial radios implement a switched filter at the point were L1 though L4 (and C200 to C204) are present and a filter would be switched in for 15M, 12M and 10M.   Allison is investigating other ideas.

This issue does not show up in CW mode as the radio is keyed in a different manner and there is no 45 MHz contribution.

Additional comment

Jerry KE7ER comments that the spur is not a problem from 3.5 MHz up to 18MHz.  So for operators that never use the 15, 12 and 10 meter bands on SSB, this should not of concern.  For many of us, a $129 rig that covers 80-17 meters is still a very good deal.

For those wishing to use the rig above 18 MHz, perhaps some sort of external band-pass or high-pass filter is in order between the µBitx and the antenna.
Some (but not all) antenna tuners might be sufficient.

If the audio from the mike amp is kept reasonable, Allison reports that the spur is 40+ dB down.  Jerry assumes it should be 43 dB below the primary signal to be compliant in the US, so it’s marginal at best.  The worst of this problem could be avoided by somehow monitoring the transmit signal level  at the mixers. Allison has found that gain with the 2n3904’s can vary on the upper bands depending on your particular device characteristics, so it currently is not sufficient to just check the level at one point in the chain. However, if gains can be made more predictable,  perhaps monitoring at the top of RV1 using a diode RF probe would be sufficient?

The µBitx has a 30 MHz low pass filter between the mixers and the power amp.  As Allison says, most multiband rigs would have switched bandpass filters in that position.  Signals are quite low level, so this could probably be done with analog switches rather than relays. So yet another possibility is to add a daughterboard with switched bandpass filters to replace the filter at L1,2,3,4. We only need 3 or 4 filters there and parts can be small and cheap, so not so bad.

The spur is at the first IF frequency of 45 MHz minus the operating frequency. If the first IF is raised from 45 MHz to 70 MHz or more, that should remove the spur for all frequencies from 3.5 to 30 MHz.  That 70MHz IF strip would definitely require something better than the 2n3904’s that are in the µBITx!