Fixing low SSB drive (updated)

Anders SM5NNO has drawn attention to a published fix for low levels of drive on SSB with BITx transceivers from Mr K P S Kang  (VU2KR / VU2OWF) on this blog.   While the mic gain fix relates to the BITx40, it translates readily to the uBITx.

Reference

An update

André PA3EIV confirms that the above fix (by Mr. K P S Kang VU2KR works 🙂

He changed the value of R65 to 4K7 and the value of R63 to 10 Ohm using 1206 surface mount components (desoldered from scrap prints).

He now has, on normal voice volume, 10 watt’s out on 20m.  RV1 is turned counter clockwise for about 75%.   André uses a Baofeng microphone.

Reference

Using a dynamic microphone

Dennis Yancey asked the group “Has anyone used a dynamic mic on the uBITx?”    Dave WI6R responded with a guide for modifying the uBITx to use a Dynamic Mic:

Referring to the uBITX Schematic.   The Gain of the Mic PreAmp is controlled by R63 in the Emitter of Q6 to C62/R64.  It basically decouples the audio bypass of R64 by C62 to limit gain for the high output Electret Mics.

Substituting a Dynamic Mic

Replacing R63 with a Zero Ohm resistor and putting a 10K potentiometer at the Mic input should allow a Dynamic Mic to work now with a Mic Gain Control.  Also, R60 that supplies Mic BIAS to the Electret-Condenser Mic needs to be removed.  If there is not enough gain after this mod, you might have to reduce the value of R64 to maybe 470 Ohms or so. 

If you cannot look at your transmitted signal on a scope at least listen to your audio on another receiver to verify you are not causing distortion.

More Gain for an Electret Mic
To simply get more gain with an Electret Mic you might try dropping another 47 Ohm resistor on top of the existing R63.  You can solder another chip resistor on top by soldering one end at a time.
[EDITOR:  you can also bridge the surface mount resistor with a standard through hole resistor.  Shorten the leads and bend over about 1/8″ or 3mm for soldering to the ends of the surface mount component]
Reference

MAX9812 Mic Pre-Amp conclusions

David N8DAH has been testing the MAX9812L Mic Pre-amp module on his BITx40.  In theory this should improve the gain and signal quality.

David says “So far its working ok at best I sound a bit robotish.”

“I am TXing at around 20w with my amp. I took the audio out through a 10uf dc blocking cap to the bitx40 mic in.  I powered the board from a 9v just for testing.  R136 is about 1/4. If you use a pre-amp you should adjust this lower or you will cause one heck of a noise on tx.  I am not yelling or shouting to get audio out now but not sure I like the audio in any case.

This is without the pre-amp … with the audio files from Michigan to Milford PA websdr

This is with the pre-amp …

David has decided he “might just stick with the slight yell to get the audio out. I like the idea of not having to shout but do not like the audio from this version of preamp”.

Others may think differently.  Mike ZL1AXG thought his “more robot-like” voice was more intelligible because it was more “punchy”.

Jeff AD6RH says:

“I used another mic housing with a DPDT switch and wired it so voltage is supplied only when PTT is engaged. I am using a CR2032 3v button cell. It seems to work fine, but I have not compared the stock vs. preamp mic with anyone on the air yet. It definitely has more average power on the watt meter. I can hear some peaks come thru the speaker when transmitting. I may try installing a pot to dial back the gain.”

Reference

uBITX Mic Audio

Dave WI6R thinks that the rig only needs slightly more gain than the existing Mic PreAmp and that adjusting values to add gain is really all that is needed.  He doesn’t think it needs 40 dB of extra gain.

He has resurrected a Mic Pre-amp design used 50 years ago in the SBE SB-33 SF-1 solid state rig that first used bilateral amplifiers.   Bilateral amplifiers are used, of course, in the BITx transceivers.
This design had plenty of gain and worked with a Dynamic Mic with significantly lower output than any of the typical Electret-Condenser Microphones used today.   Also note that the Mic PreAmp was powered only when the rig was in TX and a simple diode was used to shut off the Mic PreAmp in RX with the same TX voltage.
Dave used this rig in the ’60s and doesn’t recall any “pop” when going from RX to TX or vice-versa. The “Signal Splitter” was used to isolate the TX and RX Audio.

Raj, VU2ZAP responded suggesting that simply decreasing the value of R63 would give you more gain!