Replacement to Q70 for more audio gain, less overload

Tom W1EAT  has noted that Q70, the audio pre-amp, has a really big job in the uBITX and sometimes gets overdriven by very strong signals.   Tom also replaced the 2822 audio amp with an LM380 and lost around 8db in audio gain.

So he though he would try another transistor to try and improve this situaiton.

He had some 2SC945 transistors marked with the highest “beta”(AKA hfe) rating, so I took one with a 360 hfe and replaced Q70.   He made no other component changes. The 2SC945 is supposed to be specially designed for audio pre-amps, so it ought to be a good replacement.

The results were totally positive. Tom has more AF gain, and none of the signals in tje IARU HF contest overloaded it.

Something for experimenters to try out …


JackAl Board

Now you can have a look at a partially populated JackAl board thanks to this photo from Jack W8TEE in response to a question about a LA4425 as a replacement to the TDA2822.

The highlighted square in green is the audio amp stage of the JackAl board: a 7W TDA7266M.  Seems like you could really blast the neighbours with that one!

In case you haven’t figured out what the JackAl board is about: it is a supplementary board that hsould be released in the next few weeks by Jack and Al, that adds a Teensy 3.6 processor, and a number of other mods, all on one board.  The Teensy will give the µBITx new features like DSP.

Distorted audio v4 Main Board?

An initial report from Mike (callsign not known) of distorted audio on a v4 main circuit board was tracked down to the audio amplifier.  The v4 main board is the new board shipping from HF Signals from around the beginning of June 2018.

Mike solved his problem by bypassing the audio amp and using an output amp as indicated bottom left in the photo above.   You can see that he has also incorporated a mic amp board in his prototype.

We will be watching out (or rather listening out) with interest to see if others are experiencing the same distortion issues from the audio amplifier section.  Hopefully this is just a one-off!


Follow up

Mike has now fixed the problem with crossover distortion.  It was a biasing issue in the audio final.

Raj VU2ZAP suggested lifting up D15 or 16 and disconnecting one end from the board. Then, solder the center and one end of a 47 or 100 Ohm preset between the two diodes.   Make sure the preset is at minimum. Power up and slowly increase the preset till distortion goes away, while also checking that  Q72  and Q73 don’t get hot when the volume is low.

 It is possible that this problem may reappear on other new v4 rigs.

Redoing the biassing as suggested by Raj VU2ZAP solved the issue.  Mike  took a 500 ohm pot and paralleled that with a 125 ohm resistor.   He  says, “The mod doesn’t look so good (LOL) but it works. One of the transistors became warm if the voltage difference due to the pot became too large. I adjusted this while feeling the temp and listening to a CW carrier”.   The setting point was where he observed low/no distortion AND low temperature.

The photo below shows how Mike fixed the issue.


Hints for removing blown TDA2822

Many constructors have suffered the failing TDA2822.   Today, few will have this experience as the v4 board doesn’t use the TDA2822 at all, but discrete transistors in the audio amplifier.

If you have a blown TDA2822 then it helps to know how to remove the blown chip.   Advice from other constructors is:

  1. Cut off the legs of the chip as close as possible to the chip itself
  2. Hold each leg tightly with pliers, while heating the soldered end on the board.  Wiggle the leg until it comes out.
  3. Clean up the holes using a solder sucker.
  4. Install an 8-pin DIL socket to hold a new TDA2822 or one of the potential replacement chips.

Another board from Nik VK4PLN that does several things at once

Nick VK4PLN has been working on a new board that will give a few extra features to a stock uBitx and plugs into the audio loom socket.

Its an Audio board providing easy access to Audio I/O pins. (add in your own AGC board, External amplifier…)  It includes an area for adding an SSM2167 Mic Pre-amp module (with filtering for feedback and shutdown on TX).    It also includes the simple 4 component PTT POP fix. (BS170) and a switchable 200hz CW filter. (LM324) that Nick already produces as a board for purchase.
The board has a bonus “snap off” section with a 3.5MHZ BCI filter for the RX chain.

Here is a pre-view, NOTE this is a WORK-IN-PROGRESS.


VK4PLN audio filter board

Nik VK4PLN has now received his 700Hz CW audio filter boards and built up the board as shown below:

He put these on the spectrum analyser.  The spectrum before the filter is included in circuit:

And after:

Seems to work!   To Nik’s ears an LM324 gives a better result than the TLC274 op amp.  You mileage may vary.


Gian, I7SWX, has shared a mod for replacing the TDA2822 audio amplifier. He intends to apply this circuit after other mods he is experimenting with on his uBITX.

The audio PA is the TDA2003, an amplifier where the bandwidth can be modified.  His circuit is designed for 3kHz.

This circuit, with reduced bandwidth, has been tried on an FT920.  It is possible that some components values may need to be changed.
It is important to note that Gian has not tried this mod as yet, but others might like to beat him to it!



A 5v bus for the uBITx

Nigel G4ZAL has  just finished his µBITx build and modded it a little in readiness for adding additional boards/hacks.

He cut the track feeding the TDA2822 and fed it with 5v from a little Radio Control UBEC.  At the same time, he removed the 5v regulator on the Raduino and fed that from the UBEC as well.   You can see from the photos that he has added a little ‘bus’ for picking off further 5v supplies as required.

His installation looks pretty snappy in the well used Banggood case



And the µBITx is already hard at work on 40m using the FT8 digital mode:


700Hz CW Audio filter board

Nik VK4PLN has yet another board design – this time for an audio CW filter similar to the QCX and HiPerMite.  Nik says “he is  loving the cheap and easy EasyEDA/JLPCB boards and simple web designer”.

He “takes no credit for the design, just copied it and added a switching relay.   He has ordered 10 boards at $10 posted”.

Details of the filter

Center Frequency: 700 Hz
Bandwidth: 200 Hz
DC Power: 5VDC
GAIN: Upto 20dB via R11 and R12 + trimpot.

Resistors 1206 SMD:
R1 33k
R2 33k
R3 1M
R4 47k
R5 47k
R6 36k
R7 36k
R8 10k
R9 750k
R10 10
R11 100K
R12 100K

Capacitors 1206 SMD:
C1 0.1u 104
C2 47n 473
C3 36n 363 (33n + 3n3 mount on side together)
C4 1n 102
C5 39n 393 (33n + 5n8 mount on side together)
C6 1n 102
C7 2n2 222
C8 2n2 222
C11 0.1u 104
C14 220u Electrolytic

Relay OMRON G6S-2-DC5
200K/100k trimpot

R11 and R12 are optional to parallel the 200k trimpot to make it a logarithmic 100k.   Or just use a linear 100k pot.

Use a switch connected to 5V to turn on the filter.

This powers the opamp and switches the relay feeding the audio into the circuit.  When off the relay just passes the audio straight through unfiltered.


Replacement to TDA2822 coming soon!

Sajid, VA3QY asked Ashhar Farhan where he could source a new and reliable TDA2822 audio chip.

Ashhar Farhan has replied, “I am working on an audio amp.  I am testing it live. I always personally use circuits on the air before recommending them. I hope that by Tuesday I will have something you can use.   About 100 out of 4000 boards have had this problem. and less than 20 of them have reported the blow out.”